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Abstract Virtual high-throughput screening of molecu-
lar databases and in particular high-throughput protein–
ligand docking are both common methodologies that
identify and enrich hits in the early stages of the drug
design process. Current protein–ligand docking algo-
rithms often implement a program-specific model for
protein–ligand interaction geometries. However, in order
to create a platform for arbitrary queries in molecular
databases, a new program is desirable that allows more
manual control of the modeling of molecular interactions.
For that reason, ProPose, an advanced incremental con-
struction docking engine, is presented here that imple-
ments a fast and fully configurable molecular interaction
and scoring model. This program uses user-defined, dis-
crete, pharmacophore-like representations of molecular
interactions that are transformed on-the-fly into a con-
tinuous potential energy surface, allowing for the incor-
poration of target specific interaction mechanisms into
docking protocols in a straightforward manner. A torsion
angle library, based on semi-empirical quantum chemistry
calculations, is used to provide minimum energy torsion
angles for the incremental construction algorithm. Dock-
ing results of a diverse set of protein–ligand complexes
from the Protein Data Bank demonstrate the feasibility of
this new approach.

As a result, the seamless integration of pharmaco-
phore-like interaction types into the docking and scoring
scheme implemented in ProPose opens new opportunities
for efficient, receptor-specific screening protocols.

Keywords Protein–ligand docking · Potential energy
function · Virtual screening · Scoring

Abbreviations AM1: Austin Model 1 ·
CCDC: Cambridge Crystallographic Data Center ·
COX2: cyclooxygenase 2 · IA: interaction data structure ·
NAPAP: Na-(b-naphtylsulfonyl-glycyl)-p-amidino-
phenylalanyl-piperidid · QSAR: quantitative structure
activity relationships · PDB: Protein Data Bank ·
RMSD: root mean square deviation · TDF: target
description file · TPSA: topological polar surface area ·
vHTS: virtual high-throughput screening

Introduction

Molecular recognition, within protein–ligand complexes,
represents a highly complex phenomenon. Its appropriate
modeling is essential for rational, structure-based drug
design. Despite limitations in today’s knowledge about
the biophysics and biochemistry of protein–ligand bind-
ing, it has been recognized that simplified models of
molecular recognition provide a feasible and efficient
approach for in silico ligand generation in the early
stages of drug development. Generally, in silico screen-
ing can be viewed as a complex algorithm for the mining
of molecular databases. The screening is usually based on
either protein–ligand docking, ligand–ligand alignment
or pharmacophore searches. In this paper, we focus on
protein–ligand docking, although our software ProPose
can be extended easily to both alignment- and pharma-
cophore-based screening. A variety of methodologies and
algorithms for protein–ligand docking are described in
the literature and have been reviewed extensively (e.g.
[1, 2, 3, 4]). These methods range from the very simple
rigid-body approaches to the detailed molecular dynam-
ics simulations of protein–ligand binding. Virtual high-
throughput screening (vHTS) can be achieved by ac-
cepting a compromise between a realistic representation
of the molecular interactions and computational feasi-
bility.

Docking software consists of two main parts: an al-
gorithm for generating docked conformers of the ligand
and a method for scoring these conformers. In order to
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solve the first problem several algorithms have been de-
vised and implemented into current docking software to
avoid the combinatorial explosion of ligand conformers
efficiently. AutoDock [5] and Gold, [6] for example, use
genetic algorithms to optimize the bound ligand confor-
mation. A rigid-body approach by shape comparison on
multi-conformer libraries is performed by, for example,
Dock [7] and FRED. [8] The program Glide [9] combines
a variety of methods: a systematic search step for ap-
proximate positioning, is followed by a force field ener-
gy optimization and then a refinement by a Monte
Carlo sampling of conformations. FlexX, [10, 11, 12, 13]
PhDock, [14] Dock4, [15] and Hammerhead/Surflex, [16]
for example, are based on incremental construction al-
gorithms that first place base fragments in the binding site
then build up the ligand fragment by fragment. For base
fragment placement, the molecular interactions are trans-
formed into a discrete representation: a set of discrete
points is placed at locations where protein–ligand inter-
actions are likely. This set of points, however, is used for
fragment placement only, e.g. via triangle matching but
not used for scoring. However, this kind of discrete rep-
resentation offers the opportunity for a novel docking
program design. After the base fragment placement, the
complete ligand is constructed by attaching all the frag-
ments. FlexX [10, 11, 12, 13] and Dock4 [15] imple-
ment a “greedy” algorithm that limits the conformational
searches using a clustering algorithm based on the score
and RMSD of the conformers. Slide [17] uses a discrete
representation of the protein–ligand interactions to place
the complete ligand by triangle matching for selected
anchor fragments. A subsequent optimization step, for
acceptable ligand and protein side-chain torsion angles,
resolves the resulting collisions between protein and li-
gand atoms.

Scoring the generated ligand conformers represents
a much more difficult problem. Essentially, three ap-
proaches are widely used today: force field-based scoring,
“potentials of mean force” (for a recent example applied
to protein–protein interaction see [18]), and QSAR re-
gression based scoring. [19, 20] Each approach has its
specific advantages and problems. According to Ferrara et
al., [21] known scoring functions can discriminate be-
tween near-native and mis-docked conformations but do
not reflect experimentally derived binding affinities. Ef-
forts in improving established scoring methods are on-
going and novel scoring schemes are frequently proposed
in the literature. In order to keep pace with the progress
made in this area, users of established protein–ligand
docking programs are often confronted with the major
drawback of these programs, which limits their applica-
bility in the long run: users can modify the interaction
geometries and scoring functions only in a limited fashion
and the implementation of new scoring and interaction
models usually requires the re-compilation of the soft-
ware. For example, to implement novel interaction ge-
ometries and types for screening for transition state ana-
logs (e.g. in aspartic proteases), covalent inhibitors
(e.g. in cysteine proteases), or ligands interacting with the

heme oxygen in cytochrome P450, one either is limited to
the geometries and functions provided by the respective
docking software or may have to resort to modifying the
source code, if available. Therefore, a program is required
that allows a more flexible, user-defined treatment of
molecular interactions. This will create a platform for
queries in molecular databases that facilitates the adap-
tation to problem-specific interaction and scoring meth-
ods.

Most importantly, interaction types and geometries
should be under full control of the user facilitating the
handling of important, yet difficult screening targets. For
example, for the targets mentioned in the last paragraph
the modification of ligand structure and/or protonation
state cannot be neglected in the course of its interaction
with the receptor. Since the molecules in a database are
usually stored with a standard protonation state and a
fixed structure, modeling would require modifications
of certain molecules. Some approaches for performing
modifications before docking have been described using,
for example, the docking program QXP/FLO (see [22]
and references therein). The modifications may be fea-
sible for a small number of molecules, but become in-
creasingly time-consuming for the large data sets used in
vHTS containing millions of molecules: (i) A molecule
may contain more than one point susceptible to an, e.g.
nucleophilic, attack or may be involved in several types of
chemical reactions, all of which leads to a potentially
large number of derivatives that have to be considered
explicitly. (ii) It may not be desirable or practicable to
modify a huge number of molecules in the database for
different screening runs in different ways. A more effi-
cient way to handle such cases is to define new, non-
standard interaction types for the molecular substructures
involved. For example, the point of molecular attack and
the geometry of a nucleophilic reaction can be defined by
a corresponding interaction. This increases the probability
of a correct positioning of the reacting ligand within an
active site, thereby simulating the contact pair just before
formation of the transition state. This methodology is well
suited, for example, to screen for covalent inhibitors
where the balance between “molecular recognition” (af-
finity from non-covalent interactions) and “reactivity”
(affinity from covalent bonding) is associated with im-
portant selectivity and toxicity considerations (see [22]).
Moreover, our methodology is able to screen for non-
covalent and potentially covalent ligands in parallel and,
more importantly is able to evaluate different possible
derivatives of a single molecule implicitly during the
docking process without having to dock several of them
explicitly.

In order to overcome those limitations of previously
proposed approaches to protein–ligand docking we de-
veloped a novel docking program, “ProPose”, designed
for virtual high-throughput docking. The main design
objectives were to include:

– A flexible interaction scheme, easy to configure for
docking as well as for scoring
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– A balanced treatment of polar and non-polar interac-
tions

– Sufficient speed to support the integration into effi-
cient database search technologies such as 4SCan [4]

This can be achieved by extending the established
approaches as implemented in, for example, FlexX and
Slide, and defining all interaction geometries between
chemical moieties, for fragment placement as well as for
scoring, as three-dimensional point sets associated with
specific chemical substructures. This pharmacophore-like
model of interactions allows for an easy-to-understand
and flexible definition of arbitrary database queries. The
discrete representations of interaction geometries are both
computationally very efficient and easily stored in hu-
man-readable text files. An efficient weighting and av-
eraging scheme allows the transformation of these sets of
discrete points into a smooth potential used for the opti-
mization and scoring of ligand positions. A smooth po-
tential energy surface is necessary for (i) an efficient
optimization of the ligand pose in the course of the
docking process and (ii) a continuous scoring function.

This paper focuses on the description and validation of
the docking engine. For this validation study, ProPose
configuration files have been designed that implement
B�hm’s approach to protein–ligand scoring. [19] A di-
verse test set of 293 non-covalent protein–ligand com-
plexes is docked in order to demonstrate the performance
of ProPose. Additionally, screening runs against two
targets, cyclooxygenase-2 and thrombin, are performed.
ProPose, however, is not limited to a specific scoring

approach and the user can define completely different
scoring functions and interaction geometries. The effi-
ciency of non-standard interactions is demonstrated
by docking known inhibitors into the active site of ca-
thepsin B.

Methods

System overview

The ProPose docking system is illustrated in Fig. 1. The design of
the system was optimized for utmost applicability as well as for
further development. First, the docking work-flow is split into
preparation and screening. The preparation tool, PrepD, creates a
target description file (TDF) which contains all information about
receptor interactions and atoms needed for docking, including atom
coordinates for the clash test and receptor interaction points. The
screening engine itself, ProPose, uses the TDF to screen a database
of ligands, resulting in a set of ligand poses and scores. During the
incremental construction process of the ligand ProPose accesses a
torsion angle library (see section Torsion angle library) and a plain
text configuration file providing the interaction energies of all de-
fined interaction types. Second, the library version of ProPose can
be linked to other programs. This allows other programs to use the
functionality of ProPose. For example, it can be linked by the in-
terface wrapper SWIG [23] to create a shell interface to ProPose.
ProPose itself is linked to three in-house libraries—libtools, lib-
math, and libchemistry—which provide algorithms of general,
mathematical, and chemistry-related interest. Third, all configura-
tion and data files are plain text files and may be easily altered by
the user. For example, the complete information needed for ligand
pose generation and scoring is defined in such plain text files. This
allows for the convenient incorporation of problem-specific

Fig. 1 Work-flow using Pro-
Pose. Boxes with thick and thin
lines depict program modules
and text files, respectively. The
ligands for screening are re-
trieved from a database which is
symbolized by a cylinder. The
work-flow for applying ProPose
in a screening protocol is indi-
cated by gray arrows. White
arrows depict the dependencies
of the ProPose modules
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knowledge into a screening protocol either by manual optimization
or by automated procedures.

Interaction model

Discrete modeling of interactions

The interactions between chemical moieties are modeled by a
discrete interaction center–interaction point superposition algo-
rithm, similar to the algorithm published in [10, 11, 12, 13]. More
specifically, an interaction results when the center of one moiety is
in proximity to an interaction point of the second group and vice
versa (see Fig. 2). This description of chemical interactions may be
regarded as “pharmacophore-like”, in contrast to continuous mod-
els used, for example, in force fields. However, in contrast to es-
tablished docking software an effective averaging function trans-
forms our “pharmacophores” into a force-field-like potential en-
ergy, as described in section Scoring function and Lorentzian
smoothing of potentials. This methodology is much more flexible
than standard pharmacophore queries: the seamless integration of
the pharmacophore-like interaction types into the scoring scheme
allows the screening of substructures with specific modes of in-
teraction without discarding other potentially high-scoring sub-
structures completely. Additionally, arbitrary interaction geome-
tries may be defined by creating a set of points encoding the desired
geometry.

Chemical moieties that are able to interact with other moieties
are associated with a data structure called “interaction” (IA). Each
interaction is defined by a molecular substructure, a point set en-
coding the geometry of the interaction and a specific basic energy.
The substructure definition consists of a SMARTS [24] string and a
corresponding 3D substructure. The SMARTS string is used to
identify the chemical moieties in the receptor as well as in the
ligand. The 3D substructure definition includes hydrogens which
have to be added to the protein as well as the ligand structure before
docking. Therefore, protonation and orientation of hydrogen bond
donor groups can be used to tune the interactions. The 3D sub-

structure is superimposed on the corresponding receptor or ligand
atoms to define the transformation of the point set into the local
coordinate system of the specific moiety.

The point set describing the interaction geometry consists of
interaction points and an interaction center. For example, to encode
a spherical potential with a minimum at radius R, the interaction
points are located on the surface of a sphere with radius R and the
interaction center corresponds to the center of the sphere. Addi-
tionally, each interaction point is associated with a point weight W
that allows the modeling of angular dependencies of the interaction
energy without having to add an explicit angular term in the scoring
function. The mean distance of the interaction points d defines the
Tolerance ¼ d=

ffiffiffi

2
p

used in the scoring algorithm. Examples for
interaction geometries are shown in Fig. 3: the amide moiety is
characterized by (i) a hydrogen bond acceptor with the interaction
center (red ball) located on the carbonyl oxygen, (ii) a hydrogen
bond donor (yellow ball) on the hydrogen atom and (iii) a hydro-
phobic interaction (gray ball) parallel to the amide plane. The in-
teraction points (depicted by crosses) of these interactions are lo-
cated on spherical segments. The novel interaction simulating the
nucleophilic attack of a thiolate group on the a-carbon of an ep-
oxide moiety is modeled by interaction centers located on the thi-
olate and on the a-carbon. The interaction points outline a spherical
segment with a radius of 3.0 �.

ProPose will try to superimpose the interaction points and in-
teraction centers resulting in a close contact of the epoxide ligand
and the thiolate of a receptor. This simulates the contact pair of
such a complex just before the transition state of the reaction is
formed. This method therefore allows for a pseudo-covalent
docking without having to modify the ligand before.

Scoring function and Lorentzian smoothing of potentials

The protein–ligand interaction score is based on the summation of
interaction base energies multiplied by point weights (see Fig. 2). In
case of non-ideal superposition of points and centers the interaction
energy drops off according to a distance-dependent interpolation

Fig. 2a–c Interaction geometry and scoring scheme. a An inter-
action between two chemical moieties (red and blue) requires the
proximity of an interaction point (cross) of the first group to the
interaction center (colored sphere) of the second group and vice
versa within a certain tolerance radius (indicated by bold arrows).
The interaction energy consists of a basic interaction energy mul-
tiplied by (i) two geometry factors describing the spatial proximity

of points and centers and (ii) the respective geometric weights of
the interaction points which account for e.g. angular dependencies
of the interaction energies. b The score of interaction point–inter-
action center superposition is computed by averaging the IA point
energies within a certain cutoff radius. c In order to create a smooth
potential energy surface the point energies are weighted according
to their point—center distance using a shifted Lorentzian
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scheme. A Lorentzian averaging of point weights Wk, provides a
fast and efficient smoothing of the potential energy Ei,j

Ei;j
k ¼ Wk

c2

d2 þ c2
� 1

2

� �

8 d ¼ *

Ri
k �

*

Rj
�

�

�

� < c ð1Þ

where
*

Ri
k �

*

Rjj is the distance between the interaction point k of
interaction i and the interaction center of the interacting moiety j. c
is a cutoff distance. Tests showed that a value of c�2.6�Tolerance
is optimal to reduce the “wiggles” in the potential energy function
(see Fig. 4). The Lorentzian smoothing function can be computed
very efficiently: since all distances are calculated as squared dis-
tances, the evaluation of Eq (1) requires only one more expensive
division operation. The total energy of an interaction i with respect
to a second interaction j, is given by summation over all interac-
tions points k of interaction i multiplied by a scaling factor a

Ei;j ¼ a
X

k

Ei;j
k ð2Þ

The value of a was adjusted to 0.4 in order to calibrate the mean
value of the potential to the basic interaction energy (see Results).
The score S for two interacting moieties i and j is given by

Si;j ¼ EbasicEi;jEj;i ð3Þ
where Ebasic is the basic interaction energy specified in a configu-
ration file. The product of Ei,j and Ej,i ensures the proximity of
interaction points of interaction i and the interaction center of in-
teraction j and vice versa. The total score for two molecules is
computed by the summation over all ligand and receptor interac-
tions i and j, respectively:

S ¼
X

i

X

j

Si;j ð4Þ

Only pairs of interaction with an interaction center distance
smaller than a cutoff of 10 � are taken into account. To speed up
the computation of this sum, the interaction points of the receptor
are hashed. The scoring algorithm is based on the definitions of the
interactions only, therefore allowing full control by the user. There
is no reference to any hard-coded geometric models, for example
the spherical squares in FlexX, so the scoring algorithm can be
called “model-free”. An example of a specific implementation of a
scoring function is given in the section Validation.

Clustering of hydrophobic interaction points

Hydrophobic interactions require a special treatment: usually hy-
drophobic interaction points are modeled onto a sphere around a
hydrophobic group, e.g. methyl. This leads to an enormous number
of interaction points with a relatively unspecific spatial distribution,
therefore being unsuitable for base fragment placement as well as
for incremental construction. Therefore, the hydrophobic interac-
tion points are clustered according to one of the following methods,
which is specified in a configuration parameter:

(i) Pocket mode: only interaction points with a sufficient hydro-
phobic interaction point density in their neighborhood are re-
tained (minimum 2 within 0.5 � and minimum 4 within 1.0 �,
in order to focus on regions with a high density), all others are
deleted (see Fig. 5). This procedure creates interaction point
clusters specifically located in hydrophobic pockets and Pro-
Pose will subsequently try to fill these pockets with hydro-
phobic ligands.

(ii) Surface mode: only interaction points that represent the solvent
accessible surface of hydrophobic moieties are retained (see
Fig. 5). This method is suitable for rather shallow ligand
binding sites where the pocket mode does not work efficiently
due to a low density of hydrophobic interaction points.

Preparation tool

The ProPose system decouples input processing and incremental
construction (see Fig. 1). Therefore, the input processing for the
target only takes place once, even if a large number of ligands are
to be screened. Additionally, the docking engine does not access the
specific receptor PDB or mol2 files, thereby reducing the network
load in computer clusters. The preparation tool, PrepD reads the
receptor structure and the interaction substructure definitions and
generates the target description file (TDF) containing only the
minimum information necessary for incremental construction: the
receptor interactions including their respective interaction points
and the atom coordinates needed to evaluate clashes of ligand and
receptor atoms. The file format of the TDF does not contain any
protein specific data. This additional abstraction layer of ProPose
allows for a straightforward extension of the range of applications
by writing new preparation tools which transform the specific input
into a TDF.

Fig. 3a, b Examples of inter-
action geometries. a Amide
moiety: hydrogen bond donor
(yellow), lone pairs (red), and
hydrophobic interaction (gray).
b Novel interaction type simu-
lating the nucleophilic attack on
the a-carbon of epoxide by thi-
olate (purple, see text). Nega-
tive charge interactions are de-
picted in brown. The interaction
points and centers are repre-
sented by crosses and spheres,
respectively
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Docking engine

The ProPose docking engine handles the conformational flexibility
of the ligand by using a fragment-based approach. [10, 11, 12, 13,
14, 15, 16] A step-by-step breakdown of the docking process is
given here:

– Processing of the target description file
– Fragmentation of the ligand by cutting at rotatable bonds
– Base fragment selection and placement
– Incremental construction inside the protein’s binding site

After reading the TDF and the ligand molecule, the latter is split
into fragments by cutting at the rotatable single bonds, interaction
points are generated, and ring conformations are computed using
Corina. [25] Subsequently, two base fragments are selected ac-
cording to their potential interaction energies and placed into the
target active site. The selection criteria for base fragments are low
conformational flexibility and strong interaction possibilities:

– Base fragments with less than four atoms are not allowed.
– At least one triangle of interaction centers exists in the fragment

where the sum of possible interaction energies is below a certain
threshold (default: �8.0).

– Two fragments may be combined to one base fragment, if the
possible interaction energy does not exceed a certain cutoff
(default: �30).

– The base fragments are ranked according to their possible in-
teraction energies, including a penalty for fragments with more
than 12 conformations.

The base fragment placement is accomplished by aligning
compatible triangles of interaction points and centers, which are
identified by geometric hashing. [26] In order to allow for an en-
ergy-weighted triangle superposition, a Quaternion algorithm [27]
is used to align the compatible triangles. In contrast to, for example
FlexX, no interaction hierarchy is used for base fragment place-
ment. In combination with the clustering of hydrophobic interaction
points even base fragments without polar interactions can be po-
sitioned favorably leading to a more balanced treatment of polar
and apolar ligands for database screening. In the next step, the
ligand is constructed within the binding or active site of the target.
The ligand fragments are attached to the base fragment using tor-
sion angles from a torsion angle library (see below). A rigid-body
and/or a torsion angle optimization of the resulting ligand pose is
applied. Ligand poses that do not interfere sterically with the re-
ceptor atoms are clustered according to a heuristic algorithm to
reduce the number of possible poses so as to keep their number
within a certain range for successful docking. The clustering al-
gorithm uses the similarity between the interaction pattern with the
receptor atoms as its measure:

(i) Starting with a list sorted by score of partial ligand placements,
the poses that share a certain number of interactions with the
receptor are clustered into groups. As a standard, poses which
share a minimum of 60% of their interactions are compiled into
one cluster. Poses with a RMSD below a certain threshold with
respect to poses already present in the corresponding cluster are
removed.

(ii) A number of representatives (at least one) is chosen from each
group. The number of representatives depends exponentially on

Fig. 4 Potential energy functions. The interaction scheme is based
on discrete points, but in order to achieve a smooth potential energy
surface the different weights of the interactions points are averaged
using a shifted Lorentzian function. Four examples derived from
B�hm’s scoring function are shown in this figure: radial H-bond
potential (upper left corner), angular H-bond potential (upper right
corner), radial potential for aromatic interactions (lower left cor-

ner), and the radial hydrophobic potential (lower right corner). The
score is given in arbitrary units. At short distances the potentials
are truncated by a clash test routine that removes all ligand poses
with a significant overlap with receptor atoms (not shown in
this figure). The basic interaction energies Ebasic(lone_pair/
donor)=�4.7, Ebasic(aro_ring/aro_center)=�0.7, and Ebasic(hydro-
phobic)=�0.15 are indicated as horizontal lines
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the score of the best-scoring pose within a group. A MaxMin
Algorithm [28] is used to extract the representatives from each
cluster.

In contrast to using a ligand RMSD-based distance measure,
this clustering algorithm does not require the computation of a full
distance matrix. Additionally, the clusters do not depend on an
arbitrary starting point since the ligand poses are referenced only to
the fixed coordinate system defined by the receptor.

Torsion angle library

A torsion angle library was generated based on semi-empirical
geometry optimization of molecules created by linking molecular
fragments. First, a set of fragments was selected based on an em-
pirical analysis of an in-house database of 3.3 million commercial-
ly available compounds. In order to get a first idea of the frag-
ments necessary for the torsion angle library, a random sample
(N=10,000) of molecules from the database was split into fragments
by cleaving all single bonds. The resulting fragment statistics was
used to choose 50 fragments for the torsion angle fragment library
(see Table 1 and Fig. 6). Purely aliphatic rings were not considered
here for the torsion angle library since the ring conformations were
handled using Corina [25] and the torsion angle for fragments at-
tached to such a ring modeled by a torsion angle of a corresponding
acyclic fragment. For example, the torsion angles of a isopropyl
fragment attached to hexane were determined from the torsion
angle library entries for a isopropyl–isopropyl combination. Some
torsion angles lead to steric clashes for certain ring conformations,
but these cases could be removed by an internal clash test routine
for the ligand. Furthermore, the fragments were linked by formation
of a single bond between two fragments resulting in a set of 1,225
generated molecules. A set of 24 conformations for each of the

molecules was generated by rotating the torsion at the newly
formed single bond in steps of 15�. The resulting set of 29,400
conformations was optimized using VAMP [29] and the AM1
Hamiltonian. This procedure identified local minima in the poten-
tial energy surface for the rotation around the single bond. The
minima for each molecule were mapped onto a 15� grid with a €5�
flexibility window (€10� and €20� for C=C–C=C and similar
compounds). The atoms along the rotatable single bond and their
neighbors within a maximum distance of two bonds were used
to create a SMARTS pattern for this particular molecule. Accord-
ing to the number of bonds between an atom and the rotatable
bond atom, the SMARTS definition becomes more general. For
example for dimethyl-amide, a combination of fragments 15 and 28
(see Fig. 6) is transformed into [#7](�[#6,#7,#8])[#6](�[#6,#7,#8])
(=[#8]). The SMARTS pattern, corresponding atom and bond types,
heat of formation, and minimum energy torsion angles were stored
in the ProPose torsion angle library. In the current version of
ProPose the heat of formation is not taken into account during the
ligand scoring procedure. This will be implemented in later ver-
sions of ProPose.

Implementation

ProPose is written in ANSI C++ and compiles with Linux gcc 3.2
and Intel compilers on x86 platforms. An in-house library of
chemistry related algorithms, libchemistry, was used for input/
output of molecules, atom typing, and several other tasks. The
SMARTS matcher implemented in libchemistry is based on the
subgraph monomorphism algorithm VF2. [30] The SWIG interface
compiler [23] is used to wrap the functionality of ProPose to a Ruby
shell [31] interface. Therefore, docking and other molecular mod-
eling tasks can be performed by high-level language scripts. For
example, ProPose/Ruby scripts in combination with Perl [32]
scripts were used to generate the torsion angle library.

Fig. 5 Clustering of hydrophobic interaction points. Using the
pocket mode clustering, hydrophobic interaction points are selected
according to their neighbor density to identify hydrophobic pockets.
Only the interaction points marked as an area of orange crosses are
retained. Each interaction point gets a weighting factor depending
on the interaction point density in its vicinity. Using the surface
mode, only non-redundant surface-exposed interaction points are
retained (blue crosses). All other hydrophobic interaction points
and centers are depicted by black crosses and gray spheres, re-
spectively

Table 1 Fragment count in a random sample (N=10,000) extracted
from a 3.3 milion molecule database of commercially available
compounds. In total, 91,813 fragments were created by cleaving the
molecules at single bonds. Purely aliphatic ring systems have been
discarded for the fragment library setup

SMILES code Count SMILES code Count

C 31760 C1CCCC1 285
c1ccccc1 9761 HN1CCCCC1 280
C=O 8167 HN1CCN(H)CC1 255
NH 7567 HN1CCNCC1 251
O 6035 c1cc2ccccc2cc1 244
S 1884 C1Oc2ccccc2O1 237
O=S=O 1660 C1COCC1 196
Clc1ccccc1 1550 Clc1cc(Cl)ccc1 182
N 1276 HN1CCOCC1 180
OH 1097 S1C=NN=C1 147
Fc1ccccc1 1026 C1CC1 127
C=N 725 c1cc2cccnc2cc1 125
C1CCNCC1 645 c1cncnc1 120
N(H)H 624 Clc1ccccc1Cl 117
O1C=CC=C1 616 C=C1SC(=S)NC1=O 115
C1CCCCC1 545 S2C=Nc1ccccc21 115
Brc1ccccc1 527 C1COCCN1 114
c1ccncc1 525 N(H)(H)H 101
FC(F)F 490 C=CC#N 98
C=C 459 O1C=NN=C1 95
S1C=CC=C1 431 C1CNCC1 87
S1C=NC=C1 428 c1ccc2ncccc2c1 80
HN1c2ccccc2C=
CC1=O

380 O=C2NC=Nc1ccccc12 75

C=S 332 C1C2CC3CC1CC(C3)C2 72
OC=O 321 O=C2NC(=O)c1ccccc12 70
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Validation

In order to validate ProPose, we created configuration files that
defined interaction types and geometries for the empirical approach
to scoring derived by B�hm. [19] This, however, is only one pos-
sible model for interaction geometries and energies and should not
implicate any loss of generality for ProPose’s “model-free” ap-
proach.

The interaction energies are slightly modified (see Table 2)
compared to the original publication of B�hm in order to com-
pensate for implementation specific details, e.g. the clustering of
hydrophobic interaction points. Additionally, the ProPose scoring
scheme does not only favor attractive interactions, but also penal-
izes repulsive ones. The interaction geometries were designed to
resemble the geometries described for FlexX, [10] which are ap-
propriate in order to use the B�hm approach. The original B�hm
scoring function contains a basic energy DG0, a penalty for rotat-
able bonds DGrotNrot, a hydrogen bonding energy DGhbfhb, an ad-
ditional term for ionic hydrogen bonds DGiofio, and terms for li-
pophilic interactions DGlipoAlipo and aromatic interactions DGarofaro,
with Nrot being the number of rotatable bonds, fhb, fio, and faro the
respective geometry factors and Alipo the lipophilic surface area.

One major difference of ProPose, especially when compared to
FlexX, is the introduction of interaction point weights and the
Lorentzian averaging to model the angular and radial dependencies
of hydrogen bonds and aromatic interactions. This completely re-
places the geometric factors fhb, fio, and faro of the original formula.
In the ProPose definition of B�hm’s model, salt bridges are re-
garded as ordinary hydrogen bonds (h_don – lone_pair, DG=�4.7)
with an additive term for the electrostatic interaction (pos_charge–

neg_charge interaction, DG=�3.0), resulting in total maximum
interaction energy of �7.7 that is comparable to B�hm’s value of
–8.3. Aromatic atoms carry an extra hydrophobic interaction,
therefore the aromatic interaction energy had to be reduced to –0.3
(B�hm’s original value �0.7). For DG0 (�5.4), DGrot (�1.4), and
DGlipoAlipo (“close” contacts in Table 2), the values and metho-
dology used in FlexX have been adapted. [10, 11, 12, 13] However,
to avoid unreasonable docking results, penalties for repulsive in-
teraction have been added to the scoring function: a repulsion for
close contacts of lone pairs, hydrogen bond donors, and charges of
the same sign (see Table 2). Clashes between atoms are penalized
with a certain energy (“clash” energy in Table 2). Further tuning of
the docking results can be achieved by setting a non-zero value for
the penalties for unsaturated polar and/or apolar interactions (de-
fault: 0.0).

In order to evaluate the performance of ProPose the CCDC-
Astex Gold test set, [33] comprising 293 non-covalent protein–
ligand complexes, was docked using ProPose. The Gold test set was
used as a reference to allow an objective evaluation of the docking
performance without designing a test set specifically optimized for
our program. The target definitions were generated automatically
according to the binding site specified in the gold.conf file provided
with each complex. All water molecules were removed from the
binding site and no further receptor-specific optimization was
performed. ProPose was configured to use 400 base fragment
placements, at least 100 poses, and a maximum of 800 poses during
incremental construction. The minimum root mean square devia-
tion (RMSD) of all final solutions with respect to the reference
ligand pose was calculated including all corresponding heavy atom

Fig. 6 Fragments used to generate the torsion angle library. The
atom being connected during fragment merge is indicated by a
filled circle. Optional fragments are marked with an asterisk.
Where necessary, the Sybyl atom type that was used to create the
3D structure of the fragments is printed in brackets. 1 methyl, 2
ethyl, 3 isopropyl, 4 tert-butyl, 5 methoxy, 6 hydroxy, 7 primary
amine (N.4), 8 primary amine (N.pl3), 9 primary amine (N.3), 10
secondary amine (N.3), 11 secondary amine (N.4), 12 tertiary
amine (N.4), 13 quaternary amine (N.4), 14 tertiary amine (N.pl3),
15 secondary amine (N.pl3), 16 tertiary amine (N.3), 17 benzene,

18 toluene, 19 m-xylene, 20 o-fluorobenzene, 21 1,5-difluoroben-
zene, 22 o-chlorobenzene, 23 1,5-dichlorobenzene, 24 pyridine [C],
25 pyrimidine, 26 o-nitro benzene, 27 benzoic acid, 28 methylke-
tone, 29 sulfone, 30 sulfonic acid, 31 phosphate, 32* azo (cis), 33
azo (trans), 34 nitro, 35 carboxylate, 36 guanidine, 37* imine [C]
(cis), 38 imine [C] (trans), 39 imine [N] (trans), 40* imine [N], 41
alkene (trans), 42* alkene (cis), 43 sulfide, 44 ester (R=H), 45*
nitrile, 46 fluoromethyl, 47 difluoromethyl, 48* trifluoromethyl, 49
pyridine [N], 50 amidine
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positions. Docking is regarded as successful if the minimum RMSD
is below 2.0 �, as it was suggested by Gohlke et al. [34]

To further explore the performance of ProPose, especially when
docking mainly hydrophobic ligands, additional complexes were
docked using optimized target descriptions and interaction ener-
gies: camphor (PDB 2cpp), adamantane (PDB 4cpp), adamantone
(PDB 5cpp), camphane (PDB 6cpp), norchamphor (PDB 7cpp), and
thiocamphor (PDB 8cpp) were docked into the active site of cy-
tochrome P450 camphor monooxygenase (CYP450CAM, PDB
7cpp [35]). A stronger clash penalty energy of +1.0, and an in-
creased hydrophobic interaction energy of �0.2 were used for
docking. Additionally, the position of the tyrosine 87 hydroxyl
hydrogen interacting with the carbonyl of norcamphor was cor-
rected in order to form a hydrogen bond with the carbonyl. The
hydrophobic interaction points were clustered according to the
pocket mode scheme. A second test set to evaluate the docking of
hydrophobic ligands contained retinol (PDB 1rbp), axerophthene
(PDB 1fen), and retinoic acid (PDB 1cbs,1epb). These ligands were
docked into the active site of retinol binding protein (PDB 1rbp).

Screening runs against two targets selected from the Gold
test set were performed using ProPose. The PDB structures 1cx2
(COX2/SC-558 [36]) and 1uvt (thrombin/BM14.1248 [37]) were
chosen as targets. A random set of 9995 molecules from our da-
tabase of 3.3 million commercially available compounds (selection
criteria: 0...12 aromatic atoms, 0...5 h-bond donors, 2...14 rotatable
bonds, �3...+6 S log P, 20...200 �2 topological polar surface area
(TPSA), 250...600 D weight, and no reactive groups) was seeded
with the co-crystallized ligand in the X-ray structure of the re-
spective target. The active site was defined automatically as de-
scribed before. All molecules were docked with the same param-
eters as in the validation docking run. The same set of random
molecules was used for both screening runs. Only the top scoring
pose of each molecule was considered in these screening runs.

Finally, a set of 39 known epoxysuccinyl inhibitors of the
cysteine protease cathepsin B was docked using ProPose. [38, 39,
40, 41] These inhibitors bind covalently to the cysteine residue in
the active site of cathepsin B. The irreversible inactivation of
cysteine proteases by an active-site directed covalent inhibitor
usually proceeds via the rapid formation of a reversible enzyme–
inhibitor complex before the transition state of the SN2 nucleophilic
reaction is formed. [40] Therefore, in silico screening for active-site
directed irreversible inhibitors seems to be feasible using docking
methods. However, an increase in docking efficiency is expected if
the specific characteristics of the cysteine thiolate interaction with
the ligand can be incorporated in the docking protocol. A new

interaction was designed to model the nucleophilic attack of the
thiolate to the epoxide moiety of the inhibitor (see Fig. 3d). Scoring
of these interactions, of course, is difficult, but an empirical ad-
justment of the associated interaction energy with respect to the
other interaction energies allows for first experiments. More
specifically, an energy score between �2.0 and �3.0 leads to a
better positioning of the epoxide moiety without overruling strong
interactions such as hydrogens bonds. This value can be rational-
ized as a d+–lone pair interaction similar to a positive charge–lone
pair interaction defined in Table 2. A more reliable parameteriza-
tion of this interaction will be obtained by future VAMP calcula-
tions. The hydrophobic interaction points were clustered according
to the surface mode scheme.

Results and discussion

Torsion angle library

The AM1 calculations not only resulted in geometry-op-
timized minima for the various conformations of all ex-
amined molecules but additionally identified chemically
unreasonable combinations of fragments by dissociating
them. These “molecules” were then removed from the
torsion angle library. It is well known that the geometry of
amides may cause problems in AM1 calculations. How-
ever, our calculations reproduced the planar geometry of
the amide group quite well (e.g. dimethyl amide, a
combination of fragments 15 and 28, see Fig. 6). Starting
with 24 equidistant torsion angles in the range of �180� ...
+180�, the VAMP geometry optimization resulted in the
following minimum energy torsion angles: 1.2�, 4.9�,
6.7�, 7.7�, 8.4�, 6.4�, 6.8�, 6.5�, 178.2�, 179.0�, �179.7�,
�180.0�, �179.5�, �179.2�, �178.4�, �178.7�, �178.7�,
�179.2�, �179.3�, �179.7�, �6.5�, �6.2�, �6.4�, and �4.5�.
These torsion angles were mapped onto 0�, €5�, 10�, 15�,
20�, €175�, and 180�, which correspond to the cis and
trans conformation with a limited flexibility. A tendency
to deviate from planarity is observable for the cis con-

Table 2 Interaction types and scores for implementing B�hm’s
approach to scoring in the framework of ProPose. Positive and
negative values indicate repulsive and attractive interactions, re-
spectively. These values can be optimized for specific targets. A
reasonable range of values is provided for aromatic, hydrophobic,
and clash interactions; the default values are given in bold letters.
The values of the original B�hm scoring function were slightly
adjusted to fit to the novel features of ProPose, for example, the

clustering of hydrophobic interaction points. The interaction of
organic fluorine is regarded to be mainly hydrophobic since fluo-
rine usually occurs in substituted aromatic rings or, for example,
trifluoromethyl (see [47] and Table 1). No unit of the score (such as
kJ/mol) is given in order to indicate that the scoring is solely in-
tended to give a ranking of the ligands, but no precise prediction of
the binding energy

Type 1 Type 2 Score Remark

h_don lone_pair �4.7 Hydrogen bonding
pos_charge neg_charge �3.0 Charge–charge interaction (attractive)
pos_charge lone_pair �2.0 Charge–partial charge interaction (attractive)
aro_center aro_ring �0.7 ... �0.3 Aromatic interaction
hydrophobic hydrophobic �0.2 ... �0.1 Hydrophobic interaction
fluorine hydrophobic �0.11 ... �0.1 Hydrophobic interaction
close – �0.1 ... –0.05 Close contacts
polar_unsat – 0.0 Penalty for unsaturated polar interactions
apolar_unsat – 0.0 Penalty for unsaturated apolar interactions
clash – +0.1 ... +1.0 Penalty for steric clash
lone_pair lone_pair +0.5 Partial charge interaction (repulsive)
h_don h_don +1.0 Partial charge interaction (repulsive)
pos_charge pos_charge +3.0 Charge–charge interaction (repulsive)
neg_charge neg_charge +3.0 Charge–charge interaction (repulsive)
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formation, which reflected the interaction of the methyl
groups (shortest distance of the hydrogens 2.39 �). In
general, the results clearly demonstrated the applicability
of the AM1/VAMP calculations for generating a torsion
angle library.

Effective potentials

ProPose transforms the interaction points defined in the
TDF into an effective potential for scoring of ligand
poses. Usually, the number of receptor interaction points
in the active sites is approximately 103. This number is
considerably larger than for example the number of 100 ...
150 cited for SLIDE, [17] providing a much more detailed
representation of the active site. Despite the large number
of interaction points the time needed for docking a single
ligand is usually in the order of seconds to minutes on a
present day personal computer. For example, the single
fragment ligand molecules from, e.g., PDB 1c1e or 1hdy
were docked in 4.7 s on a 1.5-GHz x86 computer. The
mean time per fragment (including base fragment place-
ment) was approximately 2 min for the 198 successfully
docked molecules of the Gold test set using 800 clustered
poses per iteration while evaluating on average 6�800=
4,800 ligand poses per iteration. However, this value for
the mean time has to be interpreted with care: depending
on the conformational flexibility of the fragment, the
number of ligand poses per iteration reached values >104

for some ligands, thereby shifting the mean time to the
cited value. Usually the times are much shorter: for ex-
ample, the 10 fragments of the ligand from PDB 1hsb are
docked within 6.6 min, i.e. the mean time per fragment is
40 s. Due to the integration of ProPose into the intelligent
database screening method “4SCan” [4] running on a
Linux cluster system, this time scale does not impose a
restriction to small molecule screening applications.

Figure 4 shows the smooth potential energy func-
tions resulting from the Lorentzian averaging of the dis-
crete interaction points. The radial potentials for hydrogen
bonding, hydrophobic and aromatic interactions exhibit a
shape similar to a Lennard-Jones potential with a mini-
mum at 1.6 �, 2.7 �, and 3.2 �, respectively. The angular
potential for hydrogen bonding has a broad minimum in
the range of €30� and a full width at half minimum
(FWHM) of 150�. In order to reflect the uncertainties
inherent in X-ray structures used for docking, these po-
tentials are geometrically less restrictive than potentials of
established force fields.

Validation

The CCDC-Astex test set—comprising 293 non-covalent
protein–ligand complexes—was docked using ProPose.
198 (67.6%) of the non-covalent complexes had an
RMSD�2 � (see Table 3). 235 (80.2%) docked com-
plexes reproduced the reference pose with a RMSD�3 �.
For 20 (6.8%) complexes no solution could be found by

ProPose; most of these complexes include peptide ligands
(e.g. 1rne), larger cyclic molecules (e.g. 1b6n, 1fki), or
sugars (e.g. 1byb, 1cdg, 1ppi) with a large number of
rotatable bonds. This may be attributed to the incremen-
tal construction method in general. [12] Examples of
successfully docked complexes are shown in Fig. 7. The
binding mode of benzamidine in the active site of throm-
bin is reproduced very accurately (0.18 �). This is not
unexpected due to the small size of the ligand and its
well defined hydrophilic interactions with the receptor.
Ligands containing more rotatable bonds are docked with
a slight loss of accuracy but the binding mode is well
reproduced (human endothelial nitric oxide synthase/
N-omega-hydroxy-l-arginine: 0.30 �, cyclooxygenase-2
(COX2)/arachidonic acid: 0.49 �, protein tyrosine phos-
phatase 1B/6-(oxalyl-amino)-1H-indole-5-carboxylic acid:
0.59 �, streptavidin/biotin: 0.85 �). N-Phosphoryl-l-
leucinamide docked to thermolysin shows a rotation of
the isopropyl group compared to the reference binding
mode, leading to a larger rms deviation (1.00 �). Simi-
larly, the tert-butyl phenol moiety of 3’-tert-butyl-haba
docked into streptavidin is rotated by 180� (RMSD
1.89 �). The base fragment, however, is positioned cor-
rectly. In the docked complex of transketolase with 3’-
deazo-thiamin diphosphate a rotation of the thiazol ring
and a slightly shifted base fragment are observable
(RMSD 1.36 �). These examples in conjunction with
Table 3 demonstrate that ProPose produces reasonable
binding modes for most of the complexes within the test
set.

A variety of papers in the literature analyze the per-
formance of docking programs. For example, Erickson et
al. recently summarized the performance of known pro-
grams like Dock, FlexX, and Gold, resulting in success
rates between 50 and 70% [42] for a test set of 41 protein–
ligand complexes. Similarly, Kontoyianni et al. evaluat-
ed FlexX (38% success rate), Dock (6%), Gold (68%),
LigandFit (35%) and Glide (57%) on 69 targets. [3]
Kramer et al. reproduced 46.5% of 200 complexes within
2 � RMSD (rank 1 solution only) using FlexX. [12] This
rate rose to 70% when looking at the entire solution set.
Nissink et al. reported that Gold is able to dock between
65 and 85% of the Gold test set ligands with less than 16
rotatable bonds including the covalent complexes which
have been neglected in our study. [33] Schulz-Gasch et al.
examined the enrichment rates for various targets using
FRED, Glide, and FlexX, [2] which are, however, not
directly comparable to our result due to the different
validation methodology. It is obvious that all these values
are hardly comparable since they depend on the targets,
the parameters used for docking, the classification scheme
for docking poses, and the effort put in optimizing the
docking runs. Consequently, we decided to follow a more
objective approach using a test set not specifically com-
piled for our program, and an automated active site def-
inition without further optimization. Under these condi-
tions ProPose achieved a success rate of 68% (�2 �
minimum RMSD). This value may be compared to the
70% achieved by FlexX on a substantially smaller set of
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complexes but with a similar setup. However, our re-
sult has to be regarded as a lower limit since no recep-
tor specific optimization was performed. Additionally,
B�hm’s approach to scoring, as used in these tests, is
rather generic. Using a more sophisticated scheme, one
can expect a substantial improvement of this success
rate. Therefore, ProPose is certainly competitive with
the success rate of other docking programs.

To explore the performance when docking mainly
hydrophobic ligands, some more complexes were studied
using optimized parameters: first, camphor (minimum
RMSD 0.18 �), norchamphor (0.32 �), adamantane
(0.49 �), adamantone (0.32 �), camphane (0.27 �), and
thiocamphor (0.54 �) were successfully docked into the
active site of cytochrome P450 camphor monooxygenase
(CAM) (see Fig. 8). This was achieved using only minor
modifications for clash energies, minimum base fragment

energy and hydrophobic interaction energies. Due to the
rotational symmetry of the ligands some of the top scor-
ing poses show higher RMSD values; however, nearly all
of the ligand poses are located at the correct position
within the active site. Hence, ProPose is clearly able to
handle partially or even purely hydrophobic ligands. This
is underlined by successfully docking a retinol analog into
the active site of retinol binding protein (see Fig. 9) using
this protocol. Remarkably, all ligands including the purely
hydrophobic axerophthene are docked by ProPose without
preselecting the base fragment. FlexX, in contrast, uses a
hierarchical interaction scheme, where the strongest (i.e.
hydrogen bonding and aromatic) interactions are utilized
for base fragment placement due to the possibly large
number of geometrically less restrictive hydrophobic in-
teraction points. This method, however, discriminates
fragments with mainly weak hydrophobic interactions.

The screening for COX2 (PDB 1cx2) and thrombin
(PDB 1uvt) inhibitors shows that ProPose is able to cor-
rectly rank molecules which are similar to the native
ligands within the top scoring docked molecules (Fig. 10).
The distribution of scores approximately resembles a
Gaussian function, as is expected for a random set of
molecules. For COX2, 6874 molecules were docked
successfully into the active site, with the native ligand
being ranked at number 16. Among the 20 top scoring
molecules, seven carry a sulfonamide moiety, six contain
fluorine (either fluorinated aromatic rings or trifluo-
romethyl groups), two features also present in the native
ligand. An example is given Fig. 10a, molecule 2 (#5 of
the top scoring molecules): the binding mode is similar to
the native ligand with a sulfur–sulfur distance of 1.57 �
and a F–CF3 distance of 1.66 �. In the case of thrombin,
ProPose docked 8,431 molecules into the active site with
the native 4-amino-pyridine ligand found at rank #208,
i.e. within the first 3% of the docked molecules. The
example shown in Fig. 10b, molecule 2, fills exactly the
same cavity as the native ligand. It, however, lacks an
interaction comparable with the amino-pyridine–carbox-
ylate of Asp189 interaction in the native ligand. The first
molecule forming a salt bridge with Asp189 is ranked at
#100, and the first 4-amino-pyridine can be found at rank
#143. In order to further illustrate the results some known
inhibitors of COX2 and thrombin have been docked and
the score is shown in Fig. 10. The COX2 inhibitors di-
clofenac (IC50=1.17–8.9 nM in a cell assay [43]) and
flurbiprofen (IC50�1nM in a cell assay [44]) exhibit mid-
range scores, �34.5 and �34.6 respectively, which indi-
cates the preference of this docking model for the native
ligand and similar molecules. In the case of thrombin,
the lactam derivative of Na-(b-naphtylsulfonyl-glycyl)-p-
amidino-phenylalanyl-piperidid (NAPAP) [45] and ben-
zamidine achieve scores of �39.5 and �18.5, respectively.
The NAPAP derivative is known to bind to thrombin with
an IC50 of 1.6 nM, in contrast to Ki=23 nM for the native
ligand of 1uvt. These two molecules are scored just with
the opposite ranking, but both are on the top scoring slope
of the score distribution. As expected, a relatively weak
micromolar ligand such as benzamidine (PDB 1dwb) is

Fig. 7 Examples of ligand poses and crystal structures. A diverse
set of docked complexes is shown with RSMDs ranging from
0.18 � to 1.89 �: 1dwb (thrombin/benzamidine), 3nos (human
endothelial nitric oxide synthase/N-omega-hydroxy-l-arginine),
1cvu (cox-2/arachidonic acid), 1c83 (protein tyrosine phosphatase
1B/6-(oxalyl-amino)-1H-indole-5-carboxylic acid), 1stp (streptavi-
din/biotin), 2tmn (thermolysin/N-phosphoryl-l-leucinamide), 1tka
(transketolase/3’-deazo-thiamin diphosphate), and 1srf (streptavi-
din/3’-tert-butyl-haba). The reference binding modes are shown in
green. The RMSD is specified in brackets (�)

Fig. 8a, b Comparison of ligand poses and crystal structures in
Cytochrome P450 camphor monooxygenase. Norcamphor (a) and
adamantane (b) were docked with an RMSD of 0.32 � and 0.49 �,
respectively. The position of the ligand poses relative to the heme
and tyrosine 87 of Cyp450 CAM are shown. The reference binding
mode is depicted in green. The active site is outlined by its inner
surface. Orange and blue indicate hydrophobic and hydrophilic
interactions, respectively. The hydrogen bond connecting the hy-
droxyl group of tyrosine 87 with the carbonyl of norchamphor is
indicated as a dotted line
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well separated on the low scoring slope of the score dis-
tribution. The results clearly indicate that ProPose is ap-
plicable for screening. However, it is evident that docking
molecules into a rigid active site, where the co-crystal-
lized ligand was removed, will prefer molecules similar to
the native ligand. Additionally, a relatively simple scor-
ing function, as used in this test setup, cannot explain all
important details of protein–ligand binding. This again
underlines the necessity for advanced scoring methods,
for which the docking engine ProPose was designed to act
as a framework.

Finally, the docking of epoxysuccinyl inhibitors of the
cathepsin B protease showed that using the novel inter-
action type leads to a significantly better positioning of
epoxysuccinyl inhibitors inside the active site (see Fig. 11
and Table 4). For 38% of the ligands the introduction
of the novel interaction improves the ranking within the

entire solution set as well as the RMSD with respect to the
reference placement of the oxirane moiety, for 85% either
ranking or RMSD improved, and for 15% no improve-
ment could be achieved. This indicates that the novel
interaction leads to a higher probability for correctly
docking these inhibitors, despite the complete neglect of
the structural changes due to the configuration inversion
in course of the SN2 reaction. However, it is clear that the
most important step in screening for covalent inhibitors is
the optimization of the non-covalent molecular recogni-
tion in order to avoid or at least reduce selectivity and
toxicity problems and biochemical assay artifacts (see
[22, 46]). Therefore it is appropriate to model the com-
plex based on non-covalent interactions that are accom-
panied by an extra “pseudo-covalent” interaction. Further
studies, however, are necessary to parameterize the
scoring of such an interaction in a more rigorous manner.

Fig. 9a–c Comparison of ligand poses and crystal structures in
retinol binding protein. Retinol (a), axerophthene (b), and retinoic
acid (c) were docked into retinol binding protein. The reference
ligand (retinol extracted from crystal structure PDB 1rbp) is shown
in green. The active site is outlined by its inner surface. Orange and

blue indicate hydrophobic and hydrophilic interactions, respec-
tively. Remarkably, all ligands including the purely hydrophobic
axerophthene are docked by ProPose without preselecting the base
fragment

Fig. 10a, b Screening results for cyclooxygenase-2 (A, PDB 1cx2)
and thrombin (B, PDB 1uvt). A set of ~10,000 random molecules
was screened and the distribution of docking scores is shown. The
native ligands (1) are among the top scoring molecules for both
targets. The chemical structure and the score of another top scoring

molecule is marked by (2). Additionally, diclofenac (COX2),
flurbiprofen (COX2), a lactam derivative of NAPAP (thrombin),
and benzamidine (thrombin) have been docked and the respective
score is indicated by an arrow
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Fig. 11a, b Binding mode and docking poses of two epoxysuccinyl
inhibitors: The anchor residues of the epoxide moiety are shown in
orange: histidine 199, cysteine 29, and glutamine 23 of cathepsin B.
The reference ligand (N-[1-hydroxycarboxyethylcarbonyl]-leucy-
lamino-2-methyl-butane) crystallized in the PDB structure 1ito is
depicted in green as a reference. This reference characterizes the
ligand placement after the chemical reaction has taken place. The
chemical structures of the inhibitors are shown below the corre-
sponding binding mode. Using a specific interaction for the nu-

cleophilic interaction between thiolate and epoxide (ligands in el-
ement colors) improves the docked binding modes significantly
compared to a standard docking protocol (blue ligands). Without
the nucleophilic interaction the oxirane ring of ligand A (no. 23 in
Table 4) is shifted with respect to the reference, but is correctly
positioned when using this interaction. Similarly, the oxirane ring
of ligand B (no. 36 in Table 4) is rotated compared to the reference
binding mode without the novel interaction

Table 4 Results of docking the
cathepsin B test set with and
without the novel interaction
which simulates the nucleo-
philic attack. The rank of the
minimum RMSD solution
within the entire solution set
and the RMSD with respect to
a reference placement of the
oxirane-2-carboxy moiety (in
�) are shown. (++) indicates
a better ranking as well as a
smaller RMSD when using the
novel interaction, (+ �) a better
ranking, but an increased
RMSD, (� +) a worse ranking,
but a decreased RMSD, and
(� �) a worsening of both pa-
rameters. (0) indicates no
change

Ligand No. Rank/w RMSD/w Rank/wo RMSD/wo Remark

1 81 1.076 3 1.356 � +
2 32 0.877 110 0.822 + �
3 133 0.939 71 1.434 � +
4 236 1.125 114 0.891 � �
5 63 2.117 151 1.129 + �
6 1 3.845 1 3.845 0 0
7 1 0.939 25 1.405 + +
8 41 1.553 5 1.716 � +
9 143 1.219 479 1.218 + 0

10 3 1.092 138 1.324 + +
11 321 3.331 321 3.331 0 0
12 181 1.936 162 1.824 � �
13 1 0.979 248 1.068 + +
14 3 0.822 82 1.356 + +
15 1 0.942 145 1.264 + +
16 10 0.940 535 1.068 + +
17 52 0.939 5 1.405 � +
18 1 0.939 1 1.461 0 +
19 32 0.939 338 1.555 + +
20 1 1.724 1 0.783 0 �
21 10 0.930 168 1.207 + +
22 1 0.940 445 1.264 + +
23 1 0.940 275 0.999 + +
24 14 0.939 1 1.460 � +
25 77 1.825 3 1.748 � �
26 24 0.964 41 0.799 + �
27 18 2.169 101 1.174 + �
28 130 1.189 337 1.034 + �
29 1 0.939 34 1.405 + +
30 2 0.939 65 1.166 + +
31 19 1.553 2 1.716 � +
32 54 1.553 245 1.899 + +
33 90 1.554 479 1.499 + �
34 2 0.782 421 1.068 + +
35 16 1.554 148 1.166 + �
36 2 0.979 168 1.389 + +
37 128 1.357 166 1.353 + �
38 226 1.328 107 1.347 � +
39 49 0.939 128 0.783 + �

355



The introduction of a novel interaction type certainly is
similar to a standard pharmacophore constraint during
docking. However, our methodology is much more flex-
ible: the seamless integration of such “pharmacophores”
into both the interaction and scoring scheme, allows us to
screen for certain interacting substructures without dis-
carding other potentially high-scoring substructures com-
pletely. Therefore this methodology may supplement the
screening for irreversible inhibitors with the aid of a
technology that is usually focused on the reversible bind-
ing of a ligand. It is evident from the literature that
scoring functions must be improved for protein–ligand
docking. ProPose was explicitly designed to support this
venture by its open architecture. Every interaction or
scoring model is fully configurable according to user’s
needs and the user can intervene at any step without
having to worry about details of the implementation into
the program.

Summary

ProPose offers a major advantage compared to other
docking software: its utmost flexibility for application and
development. It does not contain any hard-coded inter-
action geometries, energies, or substructures. Everything
needed for docking as well as for scoring is defined in
plain text configuration files; it may thus be called
“model-free”. The interaction geometries may be derived
from experimental geometries, knowledge-based poten-
tials or even quantum chemistry calculations, depending
on the respective needs. The principal applicability of this
approach has been demonstrated by defining pseudo-co-
valent interactions that simulate the nucleophilic attack on
the epoxide moiety by a cysteine protease. This unified
approach to docking and scoring by using a transforma-
tion of discrete interaction points to a continuous potential
energy function is not limited to protein–ligand docking:
the target description file may as well be generated using
a reference ligand and an appropriate set of customized
interaction geometries. This will turn the subsequent
“docking” step effectively into a ligand–ligand alignment
procedure simply by using a different configuration file.
ProPose thus offers a flexible platform for arbitrary, not
only docking-based, queries in molecular databases that
can be extended easily to a wider range of virtual
screening applications.
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